Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Atherosclerosis ; 304: 9-21, 2020 07.
Article in English | MEDLINE | ID: mdl-32563005

ABSTRACT

BACKGROUND AND AIMS: Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. METHODS: We fed pro-atherogenic LDLr-/-ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. RESULTS: HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. CONCLUSIONS: We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Dietary Sucrose/adverse effects , Inflammation , Insulin Resistance , Animals , Apolipoprotein B-100 , Diet, High-Fat , Dietary Fats/adverse effects , Gastrointestinal Microbiome , Hyperlipidemias , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 16S
2.
Circ Res ; 125(4): 449-466, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31154939

ABSTRACT

RATIONALE: Pulmonary hypertension (PH) due to left heart disease (LHD), or group 2 PH, is the most prevalent form of PH worldwide. PH due to LHD is often associated with metabolic syndrome (MetS). In 12% to 13% of cases, patients with PH due to LHD display vascular remodeling of pulmonary arteries (PAs) associated with poor prognosis. Unfortunately, the underlying mechanisms remain unknown; PH-targeted therapies for this group are nonexistent, and the development of a new preclinical model is crucial. Among the numerous pathways dysregulated in MetS, inflammation plays also a critical role in both PH and vascular remodeling. OBJECTIVE: We hypothesized that MetS and inflammation may trigger the development of vascular remodeling in group 2 PH. METHODS AND RESULTS: Using supracoronary aortic banding, we induced diastolic dysfunction in rats. Then we induced MetS by a combination of high-fat diet and olanzapine treatment. We used metformin treatment and anti-IL-6 (interleukin-6) antibodies to inhibit the IL-6 pathway. Compared with sham conditions, only supracoronary aortic banding+MetS rats developed precapillary PH, as measured by both echocardiography and right/left heart catheterization. PH in supracoronary aortic banding+MetS was associated with macrophage accumulation and increased IL-6 production in lung. PH was also associated with STAT3 (signal transducer and activator of transcription 3) activation and increased proliferation of PA smooth muscle cells, which contributes to remodeling of distal PA. We reported macrophage accumulation, increased IL-6 levels, and STAT3 activation in the lung of group 2 PH patients. In vitro, IL-6 activates STAT3 and induces human PA smooth muscle cell proliferation. Metformin treatment decreased inflammation, IL-6 levels, STAT3 activation, and human PA smooth muscle cell proliferation. In vivo, in the supracoronary aortic banding+MetS animals, reducing IL-6, either by anti-IL-6 antibody or metformin treatment, reversed pulmonary vascular remodeling and improve PH due to LHD. CONCLUSIONS: We developed a new preclinical model of group 2 PH by combining MetS with LHD. We showed that MetS exacerbates group 2 PH. We provided evidence for the importance of the IL-6-STAT3 pathway in our experimental model of group 2 PH and human patients.


Subject(s)
Disease Models, Animal , Hypertension, Pulmonary/pathology , Metabolic Syndrome/complications , Ventricular Dysfunction/complications , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Male , Metabolic Syndrome/etiology , Olanzapine/toxicity , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Rats, Wistar , Vascular Remodeling
3.
Gut ; 68(3): 453-464, 2019 03.
Article in English | MEDLINE | ID: mdl-30064988

ABSTRACT

OBJECTIVE: The consumption of fruits is strongly associated with better health and higher bacterial diversity in the gut microbiota (GM). Camu camu (Myrciaria dubia) is an Amazonian fruit with a unique phytochemical profile, strong antioxidant potential and purported anti-inflammatory potential. DESIGN: By using metabolic tests coupled with 16S rRNA gene-based taxonomic profiling and faecal microbial transplantation (FMT), we have assessed the effect of a crude extract of camu camu (CC) on obesity and associated immunometabolic disorders in high fat/high sucrose (HFHS)-fed mice. RESULTS: Treatment of HFHS-fed mice with CC prevented weight gain, lowered fat accumulation and blunted metabolic inflammation and endotoxaemia. CC-treated mice displayed improved glucose tolerance and insulin sensitivity and were also fully protected against hepatic steatosis. These effects were linked to increased energy expenditure and upregulation of uncoupling protein 1 mRNA expression in the brown adipose tissue (BAT) of CC-treated mice, which strongly correlated with the mRNA expression of the membrane bile acid (BA) receptor TGR5. Moreover, CC-treated mice showed altered plasma BA pool size and composition and drastic changes in the GM (eg, bloom of Akkermansia muciniphila and a strong reduction of Lactobacillus). Germ-free (GF) mice reconstituted with the GM of CC-treated mice gained less weight and displayed higher energy expenditure than GF-mice colonised with the FM of HFHS controls. CONCLUSION: Our results show that CC prevents visceral and liver fat deposition through BAT activation and increased energy expenditure, a mechanism that is dependent on the GM and linked to major changes in the BA pool size and composition.


Subject(s)
Energy Metabolism/physiology , Fruit/chemistry , Gastrointestinal Microbiome/drug effects , Obesity/prevention & control , Animals , Ascorbic Acid/therapeutic use , Blood Glucose/metabolism , Endotoxemia/prevention & control , Fatty Liver/microbiology , Fatty Liver/physiopathology , Fatty Liver/prevention & control , Fecal Microbiota Transplantation , Homeostasis/physiology , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/microbiology , Obesity/physiopathology , Panniculitis/prevention & control , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Mol Metab ; 6(12): 1563-1573, 2017 12.
Article in English | MEDLINE | ID: mdl-29107524

ABSTRACT

OBJECTIVE: Previous studies have reported that polyphenol-rich extracts from various sources can prevent obesity and associated gastro-hepatic and metabolic disorders in diet-induced obese (DIO) mice. However, whether such extracts can reverse obesity-linked metabolic alterations remains unknown. In the present study, we aimed to investigate the potential of a polyphenol-rich extract from cranberry (CE) to reverse obesity and associated metabolic disorders in DIO-mice. METHODS: Mice were pre-fed either a Chow or a High Fat-High Sucrose (HFHS) diet for 13 weeks to induce obesity and then treated either with CE (200 mg/kg, Chow + CE, HFHS + CE) or vehicle (Chow, HFHS) for 8 additional weeks. RESULTS: CE did not reverse weight gain or fat mass accretion in Chow- or HFHS-fed mice. However, HFHS + CE fully reversed hepatic steatosis and this was linked to upregulation of genes involved in lipid catabolism (e.g., PPARα) and downregulation of several pro-inflammatory genes (eg, COX2, TNFα) in the liver. These findings were associated with improved glucose tolerance and normalization of insulin sensitivity in HFHS + CE mice. The gut microbiota of HFHS + CE mice was characterized by lower Firmicutes to Bacteroidetes ratio and a drastic expansion of Akkermansia muciniphila and, to a lesser extent, of Barnesiella spp, as compared to HFHS controls. CONCLUSIONS: Taken together, our findings demonstrate that CE, without impacting body weight or adiposity, can fully reverse HFHS diet-induced insulin resistance and hepatic steatosis while triggering A. muciniphila blooming in the gut microbiota, thus underscoring the gut-liver axis as a primary target of cranberry polyphenols.


Subject(s)
Fatty Liver/drug therapy , Insulin Resistance , Plant Extracts/pharmacology , Polyphenols/pharmacology , Vaccinium macrocarpon/chemistry , Weight Gain/drug effects , Animals , Gastrointestinal Microbiome/drug effects , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Polyphenols/analysis , Polyphenols/therapeutic use
5.
Am J Physiol Regul Integr Comp Physiol ; 307(9): R1146-56, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25163923

ABSTRACT

The liver plays an essential role in maternal metabolic adaptation during late pregnancy. With regard to lipid metabolism, increased secretion of very low-density lipoprotein (VLDL) is characteristic of late pregnancy. Despite this well-described metabolic plasticity, the molecular changes underlying the hepatic adaptation to pregnancy remain unclear. As AMPK is a key intracellular energy sensor, we investigated whether this protein assumes a causal role in the hepatic adaptation to pregnancy. Pregnant Wistar rats were treated with vehicle or AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) for 5 days starting at gestational day 14. At the end of treatment, the rats were subjected to an intraperitoneal pyruvate tolerance test and in situ liver perfusion with pyruvate. The livers were processed for Western blot analysis, quantitative PCR, thin-layer chromatography, enzymatic activity, and glycogen content measurements. Blood biochemical profiles were also assessed. We found that AMPK and ACC phosphorylation were reduced in the livers of pregnant rats in parallel with a reduced level of hepatic gluconeogenesis of pyruvate. This effect was accompanied by both a reduction in the levels of hepatic triglycerides (TG) and an increase in circulating levels of TG. Treatment with AICAR restored hepatic levels of TG to those observed in nonpregnant rats. Additionally, AMPK activation reduced the upregulation of genes related to VLDL synthesis and secretion observed in the livers of pregnant rats. We conclude that the increased secretion of hepatic TG in late pregnancy is concurrent with a transcriptional profile that favors VLDL production. This transcriptional profile results from the reduction in hepatic AMPK activity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Female , Gene Expression Regulation/physiology , Gluconeogenesis/drug effects , Gluconeogenesis/physiology , Glycogen/chemistry , Glycogen/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Pregnancy , Rats , Rats, Wistar , Ribonucleotides/pharmacology , Triglycerides/metabolism
6.
J Biomed Biotechnol ; 2012: 379024, 2012.
Article in English | MEDLINE | ID: mdl-23049242

ABSTRACT

Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions.


Subject(s)
Inflammation/drug therapy , Inflammation/immunology , Insulin Resistance , Insulin/metabolism , Molecular Targeted Therapy/methods , Animals , Humans
7.
Eur J Appl Physiol ; 112(11): 3905-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22415102

ABSTRACT

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.


Subject(s)
Antioxidants/metabolism , Creatine/administration & dosage , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Reactive Oxygen Species/metabolism , Animals , Creatine/pharmacology , Male , Rats , Rats, Wistar , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
8.
Lipids Health Dis ; 11: 30, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22360800

ABSTRACT

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.


Subject(s)
Insulin Resistance , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Animals , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Glucose Metabolism Disorders/etiology , Glucose Metabolism Disorders/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Muscle, Skeletal/pathology , Oxidative Stress
9.
J Invest Dermatol ; 132(1): 208-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21881592

ABSTRACT

The effects of oral ingestion of oleic (OLA) and linoleic (LNA) acids on wound healing in rats were investigated. LNA increased the influx of inflammatory cells, the concentration of hydrogen peroxide (H(2)O(2)) and cytokine-induced neutrophil chemoattractant-2αß (CINC-2αß), and the activation of the transcription factor activator protein-1 (AP-1) in the wound at 1 hour post wounding. LNA decreased the number of inflammatory cells and IL-1, IL-6, and macrophage inflammatory protein-3 (MIP-3) concentrations, as well as NF-κB activation in the wound at 24 hours post wounding. LNA accelerated wound closure over a period of 7 days. OLA increased TNF-α concentration and NF-κB activation at 1 hour post wounding. A reduction of IL-1, IL-6, and MIP-3α concentrations, as well as NF-κB activation, was observed 24 hours post wounding in the OLA group. These data suggest that OLA and LNA accelerate the inflammatory phase of wound healing, but that they achieve this through different mechanisms.


Subject(s)
Dermatitis/immunology , Linoleic Acid/pharmacology , Oleic Acid/pharmacology , Skin/injuries , Wound Healing/drug effects , Wound Healing/immunology , Administration, Oral , Animals , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , NF-kappa B/genetics , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/immunology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Skin/immunology , Transcription Factor AP-1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
Nutrients ; 3(10): 858-76, 2011 10.
Article in English | MEDLINE | ID: mdl-22254083

ABSTRACT

The short chain fatty acids (SCFAs) acetate (C(2)), propionate (C(3)) and butyrate (C(4)) are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI) tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43) and inhibiton of histone deacetylase (HDAC). SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10), eicosanoids and chemokines (e.g., MCP-1 and CINC-2). The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells) and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.


Subject(s)
Cytokines/metabolism , Fatty Acids, Volatile/metabolism , Immunomodulation , Inflammation Mediators/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Leukocytes/metabolism , Dietary Fats/therapeutic use , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Fatty Acids, Volatile/therapeutic use , Humans , Inflammation/drug therapy , Intestines/cytology , Intestines/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...